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Free volume present in condensed phases is either divided among the atoms present, or treated as 
independent holes. If a distribution of hole sizes is assumed, both approaches can be reconciled: smaller 
holes (interstitials) can be considered as being attached to atoms, while holes larger than a critical size 
(e.g. atomic) can be treated as independent. The distribution obtained depends on the choice of a free 
volume model. The model of Landau and Lifshits is studied in detail as an example. Numerical 
calculations are reported for liquid toluene in the 220-370K range. Temperature increase produces an 
increase in the number of independant holes which continually coalesce. Initially, interstitial holes grow 
slightly with a temperature increase, but then their size tends asymptotically to a limit. 

I N T R O D U C T I O N  AND SCOPE 

Free volume represents a key to the understanding of the 
properties of liquid and amorphous solid phases. The 
most successful theory of the equilibrium properties of 
liquids developed by Flory 1'2 is based on the introduction 
of a free volume term into the partition function. A 
modification of the same approach by Simha and col- 
laborators 3'4 was applied to liquid as well as solid phases. 
Transport  properties of liquid phases have been dealt with 
by the theory of rate processes (Eyring, Glasstone and 
Laidler 5) and its various modifications. A working theory 
of diffusion in polymer-containing systems has been 
formulated by Vrentas and Duda 6- a. 

In most of the theories featuring free volume one of the 
two extreme approaches is used. In one such approach, 
the free volume is divided between solvent molecules, 
polymer segments, ions, etc. (theory of the liquid state, 
Floryl'2). This approach is similar to that when the 
physical space is represented by a set of Voronoi polyh- 
edra 9, where each entity 'owns' one polyhedron. In the 
opposite extreme, the free volume is 'liberated'; the 
independent holes become entities constituting a physical 
system. The Eyring theory 5 is formulated in terms of 
holes, and holes are also important in the developments of 
Simha e t  al. 3'4. 

An intermediate approach is also possible. Vrentas and 
Duda 7 recognize four contributions to the volume of a 
polymeric system: (1) occupied volume, which resembles 
the hard-core volume of Flory 1'2; (2) extra free volume of 
glass, a non-equilibrium contribution, with its magnitude 
depending on the cooling rate; (3) interstitial free volume, 
which can be divided among molecular (i.e., non-hole) 
entities constituting the system; and (4) independent holes, 
corresponding to an equilibrium liquid. Confining our 
attention to liquid systems, we are left with three contri- 
butions to volume. Putting aside the hard-core or oc- 
cupied volume v*, we have two contributions to free 
volume. Vrentas and Duda leave open the question of 
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how the free volume can be divided into interstitials and 
independent holes. 

A further step can be taken if we recognize that we have 
a distribution of hole sizes. Some holes, which have 
the volume v h bigger than a critical or cut-off volume vc, 
are large enough to be independent (this includes in 
particular the independence of motions). At the same time, 
we have what Vrentas and Duda call interstitials, with 
volumes v i < vc. The problem is in the separation of the free 
volume v f  into vi and vh contributions. 

The existence of holes as a class of entities constituting 
the system should not be taken literally. Statistical 
mechanics suggest a slight fluctuation of density around 
an equilibrium value. At a given moment we might have a 
distance between two neighbouring liquid molecules 
large enough to accommodate a hole of molecular size. 
Various hole theories are trying to seize this effect in 
various ways, but for any particular pair of molecules the 
situation described is short-lived. While we can discuss 
averages and distributions of hole sizes, the lifetime of a 
single individual hole is found to be negligible from both 
experiment and from theoretical considerations of stat- 
istical mechanics. Permanent holes would scatter elec- 
tromagnetic radiation, (X-rays in particular) in a way 
which is not observed on pure liquids. 

MODELS 

To obtain the desired relations, we assume a model for v I. 
Two such models have been used by Golikov and 
Chalykh x° in their work on separation of the Gibbs 
function of activation for diffusion into energetic and 
entropic contributions. In the first model, Frenke111, the 
energy of formation of a hole of diameter R is: 

u = ~zyR 2 (1) 

where y is the surface tension. In the second model due to 
Landau and Lifshits 12 we have: 

rcR 3 
u -  12K~ (2) 



where Kr is the isothermal compressibility 

(3t Kr= - v  \ ~ p / r  

Numerical values depend on the model, but the charac- 
ter of contributions involved does not. We use the model 
(2), applicable to liquids as well as solids. 

Since we are interested in volumes rather than dia- 
meters, we write 

v =/~R 3 (4) 

where /~ is a geometric parameter 13'1.. Equation (4) is 
deceptively simple, but kt depends on the coordination 
number z, and the limits of z values in liquids are~5: 

4~<z~<ll (5) 

The lower limit corresponds to the liquid vapour critical 
point, and the upper limit to the triple point. The fact that 
the primary effect of a temperature increase is a reduction 
of the coordination number has been discussed earlier by 
Simha and Somcynsky 3. Therefore # depends on the 
temperature T. 

Over a large part of existence of the liquid state, changes 
of z and therefore of #(z), are small (a paper discussing this 
is in preparation). Drastic changes takes place in the 
vicinity of the critical point. For solids, changes in z are 
very small. Thus, as an approximation we shall 'freeze'/~. 
We can take the value #(8)=0.7698, and rewrite (2), 
introducing equation (4), as: 

u = Ev, (6) 

i.e. E = n/(12p~:r). 

DISTRIBUTION OF HOLE SIZES 

Given (6), the probability p(v) of having a hole of volume v 
(to be more accurate, in the interval from v to v +dv) takes 
the Boltzmann form: 

p( v )dv = ~ e -  Ev/k rdv (7) 

The pre-exponential factor is the normalization, and 

f p(v)dv = 1 
0 

(8) 

as expected. The hole size can be anything from zero to 
infinity, so that for the time being we have lumped the 
interstitials and independent holes together. 

Given (7), the average hole size ~ is 

~= f vp(v)dv=kf - 
0 

(9) 

and we can now proceed to disentangle interstitials (index 
i) from independent holes (index h). In terms of average 
volumes we have 

1) = Pi~i -t- ph~h (10) 
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The problem at hand consists in the evaluation of ~i, ~h 
and, say, Ph (we have p~ = 1 -Ph)' Firstly: 

Ph = f p(v)dv = e -e'',,'w 

We now obtain, by making use of (9): 

(11) 

while 

f vp(v)dv 
~ h = ~ = g + V c  (12) 

Ph 

Vc 

f vp(v)dv 
g i - - °  V- -Vhe  w'~ 

1 - Ph 1 - e - vj~. ( I  3 )  

A NUMERICAL EXAMPLE 

To acquire an understanding of relative roles of in- 
terstitial and independent holes (more quantitatively: to 
evaluate parameters featured in equation (10)) we have 
made calculations for an exemplary liquid. Toluene was 
chosen, since accurate volumetric data including ~:rvalues 
are available, it is a fairly often used polymeric solvent, 
and has a reasonable range of existence as a liquidl6: T m 
= 178.0K and T~,=594.0K. 

The temperature dependence of the isothermal compre- 
ssibility of liquids is given by 17 

K T C 2 

(j. cm-3 )=  explci + T ~  + c3 l n ( K ) l  (14) 

Equation (14) works equally well for elements, inorganic 
and organic compounds, and polymeric materials. We 
have used in (14) the dimensionless calculus, so as to 
indicate units and to avoid expressions such as 'In T'. 
Parameters for toluene, based on the best experimental 
data, are listed in ref. 17; to obtain 10 6 tOT, these are: C 1 = 
-33.4110; C2=642.807; and C3=4.2609. Reasons why 
J 'cm -3 is the pressure unit are given in ref. 18. 

For calculations we have taken a temperature interval 
of 150 K. For reasons discussed above, the interval is 
relatively far from the critical point; it does not include the 
melting point, but it does include the usual ambient 
temperatures. Values of KT obtained from equation (14) 
and of ~ from (9) are given in the second and third columns 
of the Table. 

To obtain ~i and ~h, we need the cut-off volume v c. It can 
be defined in a number of ways. For instance, it can be 
related to f'*, the specific critical hole volume required for 
a jump in the theory of diffusion of Vrentas and Duda 6 -8 
(note that a polymer + solvent system involves two such 
parameters). Independent holes correspond to the vac- 
ancies in the quasi-lattice in the theory of Simha 3'4. For 
the present essential illustrative purposes the exact choice 
of v c is not particularly important. Therefore we assume 
arbitrarily that at the melting point the liquid phase 
contains one half of interstitial and one half of inde- 
pendent holes. The substitution Ph(T,,)= 0.5 into equation 
(11) produces G=2.2218.10 -24 cm 3. Equations (11-13) 
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Table I Parameters characterizing the free volume in toluene 

T (K) 104 K T (J. cm-3) -1 1024 v" (cm3) Ph 1024 ~// (cm3) 1024 ~h (cm3) 

220 5.490 4.903 0.6356 1.028 7.125 
230 5.843 5.456 0.6655 1.036 7.678 
240 6.235 6.075 0.6937 1.043 8.297 
250 6.666 6.765 0.7201 1.049 8.987 
260 7.136 7.533 0.7446 1.055 9.754 
270 7.648 8.383 0.7672 1.061 10.605 
280 8.202 9.323 0.7880 1.065 11.545 
290 8.800 10.360 0.8070 1.070 12.582 
300 9.443 11.501 0.8243 1.077 13.723 
310 10.134 12.754 0.8401 1.O80 14.975 
320 10.874 14.126 0.8545 1.080 16.348 
330 11.665 15.628 0.8675 1.081 17.850 
340 12.510 17.267 0.8793 1.081 19.489 
350 13.410 19.054 0.8899 1.096 21.276 
360 14.368 20.999 0.8996 1.091 23.221 
370 15.387 23.112 0.9083 1.105 25.334 

then lead to the values ofp h, ~ and ~h listed in the last three 
columns of the Table. 

DISCUSSION 

As expected from the above equations, the data in the 
Table show that both Ph and 5h go symbatically with the 
temperature. However, at lower temperatures ~i is sym- 
batic with T, but then tapers off, apparently towards an 
asymptotic value. 

There is a flat level of ~i around 320K - -  an artifact 
resulting from frozen #. As discussed in an earlier paper 14, 
# increases when z decreases. Therefore, p increases with 
T, and the flat part of the ~(T) curve is premature, while 
the phenomenon of tapering off ~ is real. 

We conclude that the thermal expansion, in the sense of 
growth of total volume (and of total free volume) pro- 
duced by a temperature increase, produces more inde- 
pendent holes. At the same time, these holes coalesce. 
However, the interstitials, which at first were also grow- 
ing, subsequently tend to a certain size limit. This means 
that there is only so much free volume that a molecule (or 
a polymer segment) can tie to itself. From the very nature 
of the interstitial and the independent-hole components of 
the free volume, one can draw a qualitative picture as to 
the respective roles played by these components. Once we 
have performed the quantitative separation of the com- 
ponents, the picture formulated earlier is confirmed 
(Table 1). 

The free volume is also important in other classes of 
properties of polymeric and non-polymeric materials, 
especially in calculation of the temperature shift factor for 
mechanical properties, usually calculated via the W-L-F 
equation 19. Therefore, the shift factor is important in the 
impact transition temperature defined for polymers by 
Zewi and Corneliussen a°. We shall study the shift factor in 
a separate paper. 
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